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Forests, along with related natural areas such as mountains, lakes, and
rivers, provide opportunities for a wide variety of recreational activities.
Although the recreational services supplied by forested areas produce value
for the consumers of those services, the measurement of recreational value is
complicated by the fact that access to most natural areas is non-priced.
Because outdoor recreation often competes with commodity uses of forests,
such as timber harvesting or mineral extraction, failure to account for the
recreational use of forest land makes it impossible to determine the efficient
use of forest resources.

A key insight attributed to Harold Hotelling is that the price of
recreational access can be inferred from information on travel costs.
Subsequent development of this idea was undertaken by Marion Clawson
(1959) and, a few years later, articulated in a general work on the economics
of outdoor recreation (Clawson and Knetsch 1966). The basic Hotelling-
Clawson-Knetsch (HCK) approach to estimating recreation demand is to
statistically regress the number of trips taken to a recreational site on the
round-trip cost of travel between trip origins and the site. A set of demand
shift variables are also typically included in the specification to control for
socio-economic characteristics of visitors, indicators of site quality, and
costs associated with visiting substitute sites. Once a travel cost demand
curve is estimated, the value of a recreational site can be computed by
integrating the area under the demand curve.

Two types of data can be used to estimate travel cost models (see, for
example, Bockstael et al. 1991 and Freeman 1993). The early studies
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typically used aggregate data on origin zones; these are often referred to as
zonal travel cost models. Per capita visitation rates for each origin zone
(often counties, but also distance zones) were computed, and distances were
translated into travel costs using cost per mile multipliers. Socio-economic
variables for origin zones were proxy variables for the representative visitor,
and prices based on travel costs to substitute sites were included in the
specification.

The second type of data that can be used to estimate travel cost models is
based on individual observations of visitation rates and socio-economic
variables (referred to as individual travel cost models). Individual data do
not rely on the representative visitor assumption. The added precision in
describing individual characteristics and trip decisions has led to the
development of a rich array of empirical methods and, in particular, models
based on random utility maximization (RUM).

The RUM approach models the choice of a recreation site from among a
set of alternative sites as a utility-maximizing decision, where utility
includes a stochastic component. RUM models emphasize the impact of site
quality on recreation demand and are estimated using either multinomial or
nested logit models. Forestry examples include Englin et al. (1996) and
Pendleton and Shonkwiler (2001).

Another approach that focuses attention on site quality is the hedonic
travel cost (HTC) method. The HTC method is used to estimate the demand
for site characteristics using a two-step procedure (Brown and Mendelsohn
1984). In the first stage, marginal values (implicit prices) of the site
characteristics are estimated for each origin zone. Then, demand functions
for characteristics are estimated in the second stage across all origins.
Applications to forestry include Englin and Mendelsohn (1991), Holmes et
al. (1997), and Pendleton et al. (1998).

During the past decade, there has been an explosion of interest in the
application of count data models based on the Poisson distribution to
estimation of HCK models of recreation demand. In this chapter, we provide
an overview of the major developments in count data travel cost modeling
and show how they can be applied to forest-based recreation.

In contrast to earlier HCK modeling that used ordinary least-squares
(OLS) regression, count data models emphasize the non-negative, integer
nature of data on the number of trips taken and are most useful when the
counts (per person) are small. This is often the case with forest recreation,
such as backcountry trips or adventure activities, which most people
participate in only a few times a year. Although the normal distribution is a
good approximation of the Poisson distribution (which is sometimes called
the “law of rare events”) if the mean of the distribution is large, the normal
distribution provides a poor approximation of the Poisson for small mean
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values. This is due to the skewness of the Poisson distribution (Kalbfleisch
1985). Count data estimators place positive probability only on possible,
discrete events. OLS estimators can place positive probability on fractional
and negative events (Creel and Loomis 1990). Thus, for small counts of
recreational trips, a count data distribution is more likely to represent the true
data-generating process than is a normal distribution.

The remainder of the chapter is divided into four sections. The next
section provides a brief history of the development of the count data travel
cost model. The second section outlines the basic theoretical and empirical
issues that must be considered in designing a count data analysis of
recreation demand. In section 3, we use count data models to estimate the
value of rain forest protection in Brazil. In the final section, we summarize
the chapter and discuss the needs for future research in count data recreation
demand modeling.

1. A BRIEF HISTORY OF COUNT MODELS IN
TRAVEL COST ANALYSIS

Over the past two decades, applied econometricians have paid increasing
attention to estimation and testing of count data models. Early econometric
analyses of count data models include the effects of research and
development on patents issued (Hausman et al. 1984) and the relationship
between urban air quality and respiratory illness (Portney and Mullahy
1986).

Not long after these foundational studies, it was realized that data
collected for the HCK class of travel cost models were amenable to analysis
using count data models. To the authors’ knowledge, Shaw (1988) was the
first to apply count data models to recreation demand. Shaw recognized that
recreation data collected on site are truncated and may suffer from
endogenous stratification (people who frequently visit a site are more likely
to be sampled than people who rarely visit), and that failure to correct for
these problems leads to biased estimates of population parameters. Shaw’s
estimator is presented in section 2.4,

Economists are always cognizant of the need for empirical models to be
consistent with an underlying theoretical foundation. In 1993, Hellerstein
and Mendelsohn provided such a foundation for count data travel cost
models. They realized that on any choice occasion, the decision of whether
or not to take a trip to a specific site can be modeled using a binomial
distribution and, as the number of choice occasions increases throughout a
recreational season, the binomial distribution asymptotically converges to a
Poisson distribution.
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During the 1990s, Poisson and negative binomial count data models
(presented in sections 2.2 and 2.4) were estimated for a variety of
recreational resources. Hellerstein (1991) estimated count data models for
trips to the Boundary Waters Canoe Area and showed how models could be
estimated using aggregate (zonal) data. Creel and Loomis (1990) tested a
variety of Poisson and negative binomial estimators and found that count
data models were more appropriate for estimating and predicting the demand
for deer hunting in California than were OLS and nonlinear least-squares
estimators. Yen and Adamowicz (1993) evaluated the statistical properties of
welfare measures computed using count data models of the demand for
hunting bighorn sheep and suggested caution when evaluating consumer
surplus measures derived from truncated estimators (which are used for
analysing on-site data). Englin and Shonkwiler (1995) developed a
truncated, endogenously stratified negative binomial model and used it to
estimate long-run demand for overnight hikes in the Cascade Mountains.
Ovaskainen et al. (2001) used the Englin-Shonkwiler estimator to model the
demand for forest recreation trips in Finland.

A recent development in count data modeling is based on the realization
that observations of zero trips may be generated either by people who are not
in the market (they would not take a trip at any positive price) or by people
who are in the market but did not take a trip during the observation period
(the price faced in the observation period was too high). Zero-inflated
models (also referred to as augmented count or double-hurdle models) have
not been as frequently applied as other count data models, probably because
they require samples of the entire population. Shonkwiler and Shaw (1996)
clarified the nature and interpretation of hurdle count data models, including
single-hurdle selection-type models and zero-inflated models. Haab and
McConnell (1996) presented zero-inflated models for beach trips; Shaw and
Jakus (1996) showed how to estimate a zero-inflated model of the demand
for rock climbing; and Gurmu and Trivedi (1996) estimated the demand for
lake recreation using zero-inflated models. This approach is discussed in
section 2.5.

2. THEORY AND EMPIRICAL ANALYSIS
2.1 Linear Exponential Demand and Welfare Estimates

Unlike demand functions based on the normal distribution, expected
values in demand functions based on count data models are restricted to be
non-negative. A functional form that guarantees positive mean values is the
linear exponential (semi log) demand function:
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where E[Q] is the expected number of visits to a site by individual i, X; is a
vector of observations on independent variables associated with individual i
(including the travel cost), and the fs are parameters to be estimated. The
specification in equation 19.1 makes a clear distinction between the
functional form of the demand curve and the distributional assumptions used
to obtain estimates of the demand function parameters. For count data
models, the demand function is linked with a count data distribution by the
relationship:

A= E[Q]=e"" 19.2

where 4; is the mean of the count data distribution (for individual 7).

Equation 19.1 represents expected, not actual, demand, because the
equation errors associated with individual heterogeneity do not enter the
expression. Therefore, Marshallian consumer surplus in a count model is
computed for the typical consumer.

As usual, consumer surplus is found by integrating the area under the
demand curve from a lower price p, to an upper price p,. For the linear
exponential demand function, this integration yields the expression:

19.3
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where f,. is the parameter estimate on travel cost, X; P is the X; vector
substituting p,, and X;”° is the X; vector substituting p,. If p; is the choke
price (the price at which the expected number of trips equals zero), then
consumer surplus is written as:

14 "l. X-po
Cs,= [4,dp= “AXE) 19.4
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because 4,(X;?’) = 0. Equation 19.3 would be useful if the analyst wanted to
estimate the change in surplus associated with a marginal increase in price,
such as an increase in user fees. Equation 19.4 provides an estimate of total
consumer surplus associated with the site. By dividing total consumer
surplus by the number of trips (4;), it is easily seen that Marshallian
consumer surplus per trip is —1/f,.
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It is important to recognize that welfare estimates should only be applied
to the sample frame from which the Xs are drawn. If the estimator used to
obtain the fBs recovers the population parameters, then consumer surplus and
latent demand (the desired number of trips) are found by simulating the
demand equation using population means for the independent variables. This
procedure obtains a consumer surplus estimate for the typical member of the
population only if the population parameters were accurately recovered from
the available sample.

To test hypotheses about consumer surplus estimates (such as the
hypothesis that consumer surplus associated with a project exceeds project
cost), it is necessary to obtain estimates of variance. Englin and Shonkwiler
(1995) showed that the second-order Taylor series approximation of the
variance of consumer surplus associated with linear exponential demand is:

2
Var(.sz_VT+zV_6 195
ﬁlc ﬁtc ﬂt(‘

where V is the variance of 8. Of course, if estimates of exact changes in
welfare are desired, then Hicksian measures are required. Bockstael et al.
(undated) determined the compensating variation (CV) and equivalent
variation (£V) formulas to be:

A
CVz—l——ln(IJr—'BX—) 19.6
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EV=——1—1n(1~—~%—) 19.7
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where §, is the coefficient on the income variable, and 8, is the coefficient on
the travel cost variable. Englin and Shonkwiler (1995) provide a method for
calculating variances around these Hicksian welfare measures.

22 Econometric Analysis of Single-Site Count Models

Two versions of single-site count models have been developed. The first
version applies when data are available only for a specific site. These models
are based on either data for individual visitors or zonal data. The variation in
prices needed to estimate the demand curve is obtained by pooling different
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individuals who face different travel costs. Other explanatory variables are
included in the specification to control for variation in socio-economic
characteristics (such as income).

Studies based on a specific site are unusual. In the second version of
single-site models, data are pooled across individuals and sites. This
approach imposes the restriction that parameters are the same across all of
the pooled sites. If this restriction is accepted and individuals and sites are
both pooled, then the independent variables include the characteristics of the
sites as well as the individuals. Examples of this approach include Creel and
Loomis (1990, 1992), Englin and Shonkwiler (1995), and Ovaskainen et al.
(2001).

Single-site count data models are usually estimated using either the
Poisson or the negative binomial distribution. The probability density
function (pdf) for the Poisson is a one-parameter distribution (the mean
equals the variance) and is written as:

-Ajl'q[
PH(Q, = g)=~ q_,’ 19.8

!

where ¢g; is a non-negative integer, and the log-likelihood function for a
sample of size n is given by:

InL=3[-e*# +q.X,f~Ing,!] 19.9

i=l

(recall that 4; = exp(X;f)). Parameter estimates are obtained by maximizing
the log-likelihood function.

The mean-variance equality restriction of the Poisson model has been
viewed as its major limitation. One way to account for over-dispersion
(variance > mean) in count data is to include a stochastic variable (&) in
equation 19.2 that accounts for heterogeneity across people and allows A; =
exp(X; + &) to vary according to a specific probability law. Cameron and
Trivedi (1986) show that if exp(e) follows a gamma (/) distribution, then the
compound count data generation process follows a negative binomial
distribution. The pdf for the negative binomial distribution is:

1
F( A+——)
q; a

i
1) (@d)*(1+ aa) o 19.10
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where 1/a is a dispersion parameter. Other forms of the dispersion parameter
are possible (Cameron and Trivedi 1986). The distribution in equation 19.10
has conditional mean /; and conditional variance 4; (1 + a4). Since 4 > 0
and @ > 0, it is clear that the variance is greater than the mean. If the
dispersion parameter is not different from zero, the negative binomial model
reduces to the Poisson. Software is available for estimating the parameters of
both the Poisson and the negative binomial models.

2.3 Practical Issues in Model Specification

Until now this chapter has focused on what may be called the science of
recreation count modeling. These tools, while powerful, must be
implemented in a manner appropriate to a given context. A number of
practical issues arise related to model specification.

To see the question of model specification and welfare estimation, return
to the formula for consumer surplus in equations 19.3 and 19.4. Two
methods for incorporating trip attributes in the welfare estimates are
possible. First, changes in X affect total welfare, and a shift (X; — X2)
provides a measure of the associated change in consumer surplus. Englin and
Shonkwiler (1995) used this approach to derive the long-run shift in hiking
values from demographic shifts over a four-decade period. This method
could also be used to derive impacts resulting from changes in site
characteristics if that information were included in the Xs. Notice, however,
that the change in consumer surplus is entirely driven by changes in
visitation.

In some situations, this simple approach may be unsatisfactory. Suppose
one were interested in estimating the impact of clearcuts on the economic
welfare of hikers. Both the number of trips and the consumer surplus per trip
would be affected. A practical remedy is the varying parameter model where
the slope of the demand curve is a function of the level of characteristics
(Vaughan and Russell 1982). This is accomplished by adding a term that
includes the travel cost interacted with the characteristic level. Total
consumer surplus in this model becomes:

P

CS,:M 19.11

Be(X})
where f,.(X;) indicates that the parameter estimate on travel cost is a function
of site quality. In general, one simply interacts travel cost and the
characteristics linearly, but other specifications are possible.

A second related issue is the measurement of forest ecosystem attributes
in a pooled-site model. Given that GIS data are available in many areas, the
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researcher has several options. Consider the evaluation of hiking trails that
pass through different ecotypes where ftrails cover major changes in
elevation. The simplest alternative is to measure the ecotype as present or
absent along the trail (Englin and Shonkwiler 1995). A second approach is to
use the total area of forest type that a trail goes through, or the total length of
the trail that passes through a given ecotype (Pendleton et al. 1998). A third
alternative is to use a latent characteristics model to construct bundles of
attributes that represent the holistic quality of ecotypes (Pendleton and
Shonkwiler 2001). The approach taken will depend, among other things, on
the quality of the data available and the variation in the relevant ecosystems.
Focus groups and other scoping methods can indicate which of these
measures is most relevant to recreationist decision-making.

24 On-Site Survey Count Data Estimators

Recreation demand models are often estimated using survey responses
collected from on-site samples of visitors. This is because it is generally less
expensive to collect data on site than to collect data from the general
population. However, it is useful to be able to estimate population
parameters from on-site (truncated) samples so that total demand and value
can be computed. This is accomplished by adjusting the untruncated models
(Grogger and Carson 1991).

The pdf of a variable truncated at zero (i.e., zeros are not observed) is
simply the untruncated pdf f{g,) divided by the area under f{q,) where g;> 0.
This guarantees that the area under the truncated pdf equals 1. For the
Poisson distribution, the probability that g; exceeds zero is (I — exp(-4)),
and, dividing the expression in equation 19.8 by this probability, the
conditional probability for a zero-truncated model is:

e—l.-(ﬂi)q.'
q 'll —e™ l

it

Pr(Q;, =¢q,) = 19.12

This procedure can also be used to obtain the conditional probability for the
negative binomial distribution (for example, see Creel and Loomis 1990).

Shaw (1988) recognized that, in addition to truncation at zero, on-site
samples are endogenously stratified. That is, people who visit a site often are
more likely to be sampled than are people who visit infrequently. He showed
that the on-site pdf of the i person in the population is the product of the
untruncated pdf and the variable ¢/A;, which is the ratio of actual trips to
expected number of trips for the representative individual with
characteristics X;:
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et (/'Li)q[—l
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Pr(Q; = ¢;) = 19.13

A comparison of equations 19.13 and 19.8 shows that population
parameters for the Poisson model, controlling for truncation and endogenous
stratification, can be estimated from an on-site data sample by replacing g;
with (g; — I). Unfortunately, this convenient result does not hold for the
negative binomial model. As shown by Englin and Shonkwiler (1995), the
on-site sample’s negative binomial density function (found by multiplying
equation 19.10 by the ratio g/4,) is:

1
gl (g + ai)aiqi'lgi_‘ [1+a4] (q, a)

r(qg,+ 1)1“(%)

While equation 19.13 can be estimated in standard packages, the
likelihood function associated with equation 19.14 must be programmed.

19.14

Pr(Q,=q,)=

2.5 Population Samples, the Participation Decision, and
Zero-Inflated Models

Prior research has shown that truncated count data models do not always
provide good estimates of population parameters, and substantial benefits
may be gained by collecting information on nonparticipants (Yen and
Adamowicz 1993). It is logical that the most direct way to estimate
population parameters is to collect trip data from a sample of the population.
These data would include information on people who did not take recreation
trips to the site(s) of interest. Recent research has shown that modeling the
participation decision can increase the efficiency of parameter estimates and
provide planners with information about the segmentation of recreation
markets (Haab and McConnell 1996).

The zero-inflated Poisson (ZIP) and zero-inflated negative binomial
(ZINB) models are more general than the Poisson and negative binomial
models in that they relax the restriction that an identical process generates
both the zeros and the positive integers. Recreation data collected from users
and nonusers of a resource provide two kinds of information: (1) whether or
not to participate, and (2) the quantity demanded conditional on the
participation decision. Poisson and negative binomial count data models do
not extract information about the participation decision from the zeros in the
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data but treat the zeros as being generated by the same process that generates
positive observations.

Instead of a single data-generation process, the ZIP/ZINB models
consider that (1) ¢; ~ 0 with probability p;, and (2) g; ~ Poisson or negative
binomial with probability / — p;. For the Poisson model, this implies that:

g,=0 with probability p,+ (1~ p,)e™*
=& 2k 19.15

i

k!

g;=k with probability (1- p,) E

where £ = 1,2,3,... are positive integers, and exp(-A) is the Poisson
probability of taking zero trips. Note that in equation 19.15, zero trips can be
generated by both a binomial process (for people not in the market) and a
Poisson process (for people in the market who took zero trips). This later
expression, (1 — pJexp(-A;), represents the probability of a corner solution by
potential users.

The (binary) recreation participation decision can be specified as a
logistic model:

1-p.
log[ p’):Ziy 19.16
P

i

where y is a vector of participation-decision parameters, and Z; is a vector of
explanatory variables that may or may not share variables with X;. Expected
consumer surplus per year is estimated by:

CSi=(l—pi)(-_—/1—‘é—£Po—)) 19.17

where f. is the parameter estimate on the travel cost variable. Expected
consumer surplus per trip remains (- 1/8,).

2.6 Demand System Analysis

Demand system analysis derives from the realization that there may be
several sites that have related demand functions. If so, partial equilibrium
analysis must account for multiple sites. Systems of count data demand
functions can be motivated by recognizing that the limiting distribution of a
multinomial distribution (where an individual chooses where to recreate
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from a choice set containing multiple sites) is a system of independent
Poisson distributions (von Haefen and Phaneuf 2002).

In a demand system, the prices for sites and their substitutes change
simultaneously. In the case of n sites being in the partial equilibrium, the
demand system can be written as:

ln(qu)wﬁz Bp;+ym 19.18

=

where g; is the number of trips taken by individual i to site j, py are travel
costs facing individual i for trips to site j, n; is individual i’s income, and a,
B, and  are parameters to be estimated.

Given a set of demand functions of the form shown in equation 19.18, an
important question is whether they can be integrated back to the expenditure
function (for example, see Bockstael et al. 1991) or, through inversion, the
indirect utility function. LaFrance (1990) showed that if the linear
exponential demand functions are treated as an incomplete demand system,
the associated partial utility function could be recovered. Assuming no
income effects, the partial indirect utility function consistent with equation
19.18 is:

‘Zﬂiipi n X
m — (_gl_)em — Z E“_I__)eﬂiipi 19.9
B i=k+1\ B

The conditions that a system of semi logarithmic demand functions must
fulfill to form an integrable demand system have been well documented.
Empirically, the conditions are simply restrictions on the relationships
between the intercept, cross-price effects, and the income effect in the
model. The intercept restriction is:

a;20 19.20
or non-negativity, where @ is the intercept for the j™ site. A second
restriction is that the income effect (8) is restricted to be the same across
equations. A final restriction is that the Marshallian cross-price effects are all
zero.

For a Poisson count demand system, the likelihood function is simply the
product of the single-site demands shown in equation 19.8. The joint
likelihood function is:
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n e“fl?i
- g

16.21

where n is the number of sites and the latent quantity demanded for a given
site i, 4 , is exp(X;f). Equation 19.21 is maximized subject to the restrictions
described above..

A good example of the application of a Poisson demand system to forest
recreation is the study by Englin et al. (1998). They focused on the impact of
exchange rates on demand for backcountry canoeing in four wilderness
parks in Canada. Because visitors from the United States use these parks, a
shift in the exchange rate not only changes the prices of all parks but also
changes the relative prices of parks within the system to different consumers.
This is because the proportion of the travel costs that occur within the United
States versus Canada differs across individuals. For Canadian visitors, the
Canadian costs comprise total travel cost. For some visitors, such as visitors
from the north central United States, the Canadian costs comprise a large
proportion of total travel costs. However, for other visitors, such as from the
southern United States, Canadian costs are a tiny proportion of total costs.

Measuring welfare in a setting where relative price shifts are
simultaneously distributed across several substitute sites requires a Hicksian
framework for analysis. As pointed out by Englin et al. (1998), the
restriction that Marshallian cross-price effects must equal zero does not
mean that the Hicksian cross-price effects are zero. The Hicksian cross-price
effects can be calculated as:

_, P _
Sk = gy . Y949 19.22

where s;; is the Hicksian substitution effect between sites j and k for
individual /, and the g's are quantities of trips to the sites in the system by
individual i. This is simply an application of the Slutsky formula. The
Hicksian cross-price effects are symmetric (i.e., s = sy for any individual i.
If no individual takes trips to specific pairs of sites, then some cross-price
effects are zero. For example, Englin et al. (1998) found that the cross-price
effects for the most remote and most developed parks were zero, suggesting
that subsets of parks provide opportunities for different types of
recreationists.
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3. APPLICATION: RAIN FOREST VALUATION

To demonstrate how count data methods can be applied to real world
forestry problems, we present a case study of tropical rain forest protection
in southern Brazil. There are relatively few studies of the in situ value of
tropical rain forests. This example provides estimates of the recreational
value of an area designated by UNESCO (United Nations Educational,
Scientific and Cultural Organization) as the Lagamar Biosphere Reserve
and, to our knowledge, represents the first application of a count data model
to recreation in Brazilian protected areas.

3.1 Background

The Atlantic Coastal Forest stretches for more than 3,000 kilometres
along the coast of Brazil. This ecosystem is rich in biological diversity and
endemic species and is considered to be one of the most endangered
ecosystems in the world. The largest remaining contiguous area of this forest
type occurs in southern Brazil in the Environmental Protection Area (Area
de Protegiio Ambiental, or APA) of Guaraquegaba.

The forests within and surrounding the APA have been protected in large
part due to the area’s isolation, which has limited tourism and other forms of
economic development. Beyond the mountains and the bay that form the
boundary of the region lie some of Brazil’s largest and most economically
developed cities, which are potential sources both of deforestation pressure
and of tourists.

At the time of the study, recreation of any type was very limited in the
APA due to difficult accessibility. The APA could be reached by following a
dirt road, much of it in poor repair, for more than 60 kilometres. Adventure
tourism in the immediately surrounding area included mountaineering,
hiking, and camping in the protected Marumbi Area (Serra do Mar
mountains) and primitive beach recreation on the protected Ilha do Mel
Ecological Station. Immediately outside of these primitive areas, mass
tourism was occurring at heavily developed beaches along the coast.

3.2 Sampling Methods and Data

Data for this case study were collected from Brazilian tourists at
adventure tourism sites and other locations. On-site interviews were
conducted at six adventure tourism sites in the study area. The off-site
sample was drawn from tourists at 25 popular locations outside of the
adventure tourism areas. All respondents were asked to indicate how many
trips they had taken to each site during the past year. Respondents were also
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asked where they lived, what recreational activities they participated in, what
investments the government should make (if any) in public recreation, and
some socio-economic questions. Complete records were obtained for 143
people on-site and 337 people off-site. Following Creel and Loomis (1990),
trips to adventure tourism sites (the APA, Marumbi, and Itha do Mel) were
pooled and treated as a single site. This approach imposes the assumption
that parameters are the same across the pooled sites.

Distances were computed from origin-destination data using the official
Brazilian road atlas. Travel cost (COST) was estimated by multiplying
$0.15/mile times the round-trip distance. Income was defined as monthly
household income and was included in the model in logarithmic form
(LINC). Numerical scales were created identifying the number of adventure
activities (such as mountaineering and hiking) and passive activities (such as
sightseeing and picnicking) people participated in (ACTIVE, PASSIVE).
Socio-economic variables in the model are respondent age (AGE) and
gender (SEX). Finally, a dummy variable indicates the importance of paving
the access road into the region (ACCESS). While paving the road would
reduce the time and effort required to access the recreation sites, it would
also change the character of the region by promoting economic development.

33 Results

We estimated a variety of models including Shaw’s Poisson and the
Englin-Shonkwiler negative binomial (using on-site data) and the ZIP model
(using off-site data). Because the dispersion parameter was not significant in
the zero-inflated negative binomial model using off-site data, estimates for
this model are not reported here.

As shown in table 19.1, each model had the expected negative parameter
estimate on the travel cost variable, which is consistent with a downward-
sloping demand curve. Also consistent across the models, men and those
who participated in more adventure activities took more trips. The dispersion
parameter was marginally significant in the Englin-Shonkwiler negative
binomial model, suggesting that it was more suitable than Shaw’s Poisson
for these data.

The ZIP model reveals information about the decision of whether or not
to participate in adventure tourism. As can be seen in the bottom panel of
table 19.1, those who participated in more adventure-related activities, those
who did not think that access to the adventure sites should be improved, and
those with lower incomes were more likely to visit the adventure tourism
sites. Using equations 19.15 and 19.16 and the parameter estimates from the
Z1P model, we estimated that 55% of the population would not take a trip to
the adventure sites. Of the estimated 45% of the population who were in the
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market, only one-third (or 15% of the population) were likely to have taken a
trip in the survey period. An estimated two-thirds of the people in the market
did not take a trip but were located at the demand corner point. This result
suggests that there is a large potential demand for primitive recreation sites
in this region of Brazil.

Table 19.1. Parameter estimates for on-site and off-site count data models in southern Brazil

Variable Shaw’s Englin-Shonkwiler Zero-inflated
Poisson Negative Binomial Poisson
(St. Err) (St. Err.) (St. Err)
Trips equation - On-site - - Off-site -
Constant 1.512%* 1.50 -0.761
(0.766) (1.064) (0.737)
COST -0.016%** -0.022* -0.007***
(0.004) (0.013) (0.002)
ACTIVE 0.360*** 0.402%%* 0.190**
(0.049) (0.063) (0.080)
PASSIVE 0.254%** 0.308*** -0.026
(0.096) (0.119) (0.134)
AGE -0.022** -0.025* -0.005
(0.011) (0.015) (0.006)
SEX -0.426%* -0.570** -0.611+*
(0.176) (0.228) (0.287)
LINC -0.089 -0.063 0.193*
(0.098) (0.129) (0.106)
o (overdispersion) — 0.151* —
(0.084)
Participation equation
Constant — e 3.121
(1.920)
ACTIVE o — 0.516**
(0.216)
LINC — — -0.547%*
(0.284)
ACCESS — — -1.26**
(0.542)
N 143 143 337
Predicted trips/year 1.10 1.45 0.39
CS/trip® $62.50 $45.45 $142.86
CS/year” $58.13 $65.91 $55.71

“CS = Consumer Surplus
*xk = gignificant at 1% level, ** = significant at 5% level, * = significant at 10% level

In comparison, results from the on-site sample indicated that from 67%
(using parameters from Shaw’s Poisson model) to 77% (using parameters
from the Englin-Shonkwiler negative binomial model) of the population
were in the market. The discrepancy between market shares estimated using
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on-site and off-site models is due to the ability of the off-site model to locate
the corner point of the recreation demand curve.

Tobias and Mendelsohn (1991), using the same travel cost per kilometer
as in our study, estimated consumer surplus per trip to be $35 for domestic
tourists visiting a rain forest reserve in Costa Rica. Our estimates, using on-
site and off-site data, are higher than reported for Costa Rica. This is not
surprising given the proximity of relatively affluent urban areas (such as Séo
Paulo and Curitiba) to our study sites. Taken together, these studies indicate
that protection of tropical rain forests can provide significant recreational
benefits to citizens in developing countries.

4. CONCLUSIONS

Estimates of the value of outdoor recreation provide policy makers with
information that is essential to planning multiple-use management of forests.
Count data models are a relatively new addition to recreation demand
modeling and focus attention on the nature of the underlying processes that
generate data on recreational trips. If the number of recreational trips taken
by visitors is small, the true data-generation process cannot be normally
distributed. In these cases, OLS models are inappropriate for estimating
travel cost demand curves. Count data models that are consistent with the
non-negative, integer nature of trip data are required. While a Poisson model
is often the starting point for estimation, the potential for over-dispersion
should always be evaluated.

Researchers often collect data by sampling recreationists on-site in order
to save money on survey costs. If data are collected on-site, adjustments for
truncation and endogenous stratification must be made in order to estimate
population parameters. However, these estimators are founded on the
(generally untested) assumption that identical processes generate positive
trips and zero trips in the population.

Although off-site data may be more expensive to collect than on-site
data, the gain in information may exceed the incremental cost. That gain
includes the ability to jointly model the participation decision along with the
number of trips taken. Such zero-inflated models permit the researcher to
isolate three types of people in the population: (1) those who would never
take a trip, (2) those who would take a trip if the price were low enough, and
(3) those who are trip-takers. In cases where there exists a large potential
recreation demand, such as our case study in Brazil, this representation
should result in more accurate estimates of the recreational value of forests.
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